Interrogation de mathématiques

Niveau : 1ereS Durée : 3heures Calculatrice : autorisée Thème : Vecteurs et droites

Exercice 1: Inéquation.

(**3pts**)

Résoudre dans **R** l'inéquation suivante : $\frac{-5x^2 + 9x + 2}{x + 2} > 2$.

Exercice 2: Une fonction valeur absolue.

(8pts)

Soit f la fonction définie sur \mathbb{R} par : f(x) = a|x-3| + b où a et b sont deux réels fixés. On donne : f(5) = -2 et f(-2) = -11.

- 1) Montrer que a = -3 et b = 4 (la simple vérification ne suffit pas ici).
- 2) Donner la valeur exacte de l'image de $\sqrt{5}$ par f sans utiliser les barres de valeur absolue (on ne demande aucune justification).
- 3) Ecrire f sans utiliser les barres de valeur absolue.
- 4) En déduire les variations de f et dresser son tableau de variations.
- 5) Tracer la courbe représentative de f dans le repère donné en annexe.
- 6) Résoudre algébriquement l'équation : f(x) = 1.
- 7) Résoudre algébriquement l'inéquation : f(x) < -2.

Exercice n°3: Avec deux méthodes différentes.

(8pts)

ABCD est un parallélogramme.

E et F sont les points tels que $\overrightarrow{BE} = \frac{1}{4} \overrightarrow{BC}$ et $\overrightarrow{CF} = \frac{3}{4} \overrightarrow{CD}$.

O est le point de [AC] tel que du CEOF soit un parallélogramme.

G est le milieu du segment [EF] et donc le centre du parallélogramme CEOF.

Le but de ce problème est de démontrer que les points A, G et C sont alignés.

1ère méthode : Calcul vectoriel.

- 1) Montrer que $\overrightarrow{CE} = \frac{3}{4} \overrightarrow{CB}$.
- 2) Justifier les égalités : $\overrightarrow{CG} = \frac{1}{2}(\overrightarrow{CF} + \overrightarrow{CE})$ et $\overrightarrow{CA} = \overrightarrow{CB} + \overrightarrow{CD}$.
- 3) En déduire \overrightarrow{CA} en fonction de \overrightarrow{CF} et \overrightarrow{CE} .
- 4) En déduire que les points A, G et C sont alignés.

2ème méthode : Avec repère .

On travaille maintenant dans le repère (A ; $\frac{1}{4}\overrightarrow{AB}$; $\frac{1}{4}\overrightarrow{AD}$).

Ainsi on a : A(0; 0), B(4; 0) et D(0; 4).

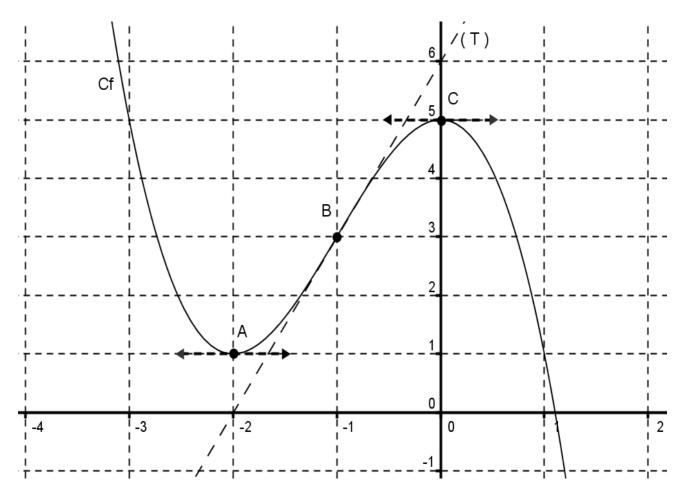
- 1) Déterminer, sans les justifier, les coordonnées des points C, E et F.
- 2) En déduire, en les justifiants, les coordonnées de G.
- 3) Donner une équation cartésienne de la droite (AC).
- 4) Conclure à l'aide de cette équation.

Exercice 4: Dans un repère

Soit $(O, \overrightarrow{i}, \overrightarrow{j})$ un repère du plan.

On considère les points A(1; 0), B(5; 4), C(11; 0) et D(-1; 3).

- 1) Déterminer une équation <u>cartésienne</u> de la droite (CD).
- 2) Déterminer l'équation réduite de la droite (AB).
- 3) Soit I le point d'intersection de (AB) et (CD). Déterminer les coordonnées de I.


Exercice 5: Lectures graphiques

(5pts)

(3pts)

La courbe $\,C_f\,$ ci-dessous est la représentation graphique d'une fonction $\,f\,$ définie sur $\,[-4\,;\,2]\,$ et qui n'admet aucun autre changement de variation que ceux visibles sur ce graphique.

- (T) est la tangente en B(-1; 3) à cette courbe.
- C_f admet deux tangentes horizontales une en A(-2;1) et l'autre en C(0;5).
- 1) Déterminer graphiquement (en justifiant votre réponse) : f'(0), f'(-2) et f'(-1).
- 2) Déterminer une équation de la tangente à C_f :
 - a) au point d'abscisse -2.
 - b) au point d'abscisse -1.
- 3) Résoudre graphiquement l'inéquation : f'(x) < 0.

Exercice 6: Avec un paramètre

(4pts)

Soit m un réel et soit d_m la droite d'équation : $m^2x - (m-1)y - 1 = 0$.

- 1) Pour quelles valeurs de m, la droite d_m passe-t-elle par le point A $\left(-1;1\right)$?
- 2) Existe-t-il des valeurs de m, pour lesquelles le vecteur $\overrightarrow{u}(1;4)$ est un vecteur directeur de la droite d_m ?
- 3) La droite d_m peut-elle être parallèle à la droite d d'équation : 5x 3y + 4 = 0 ?

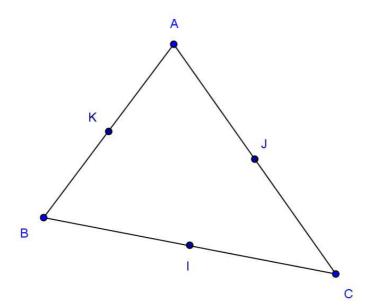
Exercice 7: Nombre dérivé

(3pts)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{x^2 + 1}$.

- 1) Montrer que pour tout réel h on a : $f(1+h) f(1) = \frac{-h(h+2)}{2(h^2+2h+2)}$.
- 2) En déduire le nombre dérivé de f en 1.

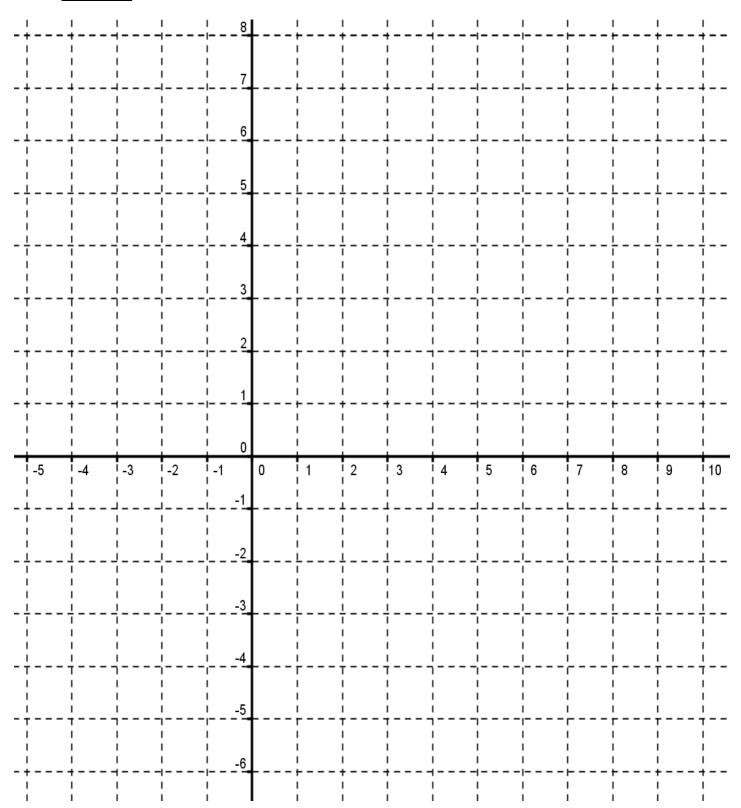
Exercice 8: Dans le triangle


(6pts)

Soit ABC un triangle quelconque.

On note I, J et K les milieux respectifs des côtés [BC], [AC] et [AB].

On considère le repère (A; \overrightarrow{AB} ; \overrightarrow{AC}).


- 1) Donner les coordonnées des points A, B et C dans le repère (A; \overrightarrow{AB} ; \overrightarrow{AC}).
- 2) Calculer les coordonnées des points I, J et K dans le repère (A; \overrightarrow{AB} ; \overrightarrow{AC}).
- 3) Déterminer une équation des droites (AI) et (BJ).
- 4) Déterminer les coordonnées du point d'intersection G des droites (AI) et (BJ).
- 5) Montrer que les vecteurs \overrightarrow{CG} et \overrightarrow{CK} sont colinéaires.
- 6) Quelle propriété venez-vous de démontrer ?

Nom : Prénom :

ANNEXE

Exercice 2: Une fonction valeur absolue.

